50年代Slater及Lehninger提出了化学偶联学说,1964年Boear又提出了构象变化偶联学说,这两种学说的实验依据不多,支持这两种观点的人已经不多了.目前多数人支持化学渗透学说
(chemiosmotic hypothesis),这是英国生化学家P.Mitchell于1961年提出的,当时没有引起人们的重视,1966年他根据逐步积累的实验证据和生物膜研究的进展,逐步地完善了这一学说.
氧化磷酸化的化学渗透学说的基本观点是:
1.线粒体的内膜中电子传递与线粒体释放H+是偶联的,即呼吸链在传递电子过程中释放出来的能量不断地将线粒体基质内的H+逆浓度梯度泵出线粒体内膜,这一过程的分子机理还不十分清楚
2.H+不能自由透过线粒体内膜,结果使得线粒体内膜外侧H+浓度增高,基质内H+浓度降低,在线粒体内膜两侧形成一个质子跨膜梯度,线粒体内
膜外侧带正电荷,内膜内侧带负电荷,这就是跨膜电位△ψ.由于线粒体内膜两侧H+浓度不同,内膜两侧还有一个pH梯度△pH,膜外侧pH较基质pH约低
1.0单位,底物氧化过程中释放的自由能就储存于△ψ和△pH中,若以△P表示总的质子移动力,那么三者的关系可用下式表示:
△P=△ψ-59△pH
3.线粒体外的H+可以通过线粒体内膜上的三分子体顺着H+浓度梯度进入线粒体基质中,这相当于一个特异的质子通道,H+顺浓度梯度方向运动所
释放的自由能用于ATP的合成,寡霉素能与OSCP结合,特异阻断这个H+通道,从而抑制ATP合成.有关ATP合成的分子机制目前还不十分清楚.
4.解偶联剂的作用是促进H+被动扩散通过线粒体内膜,即增强线粒体内膜对H+的通透性,解偶联剂能消除线粒体内膜两侧的质子梯度,所以不能再合成ATP.
总之,化学渗透学说认为在氧化与磷酸化之间起偶联作用的因素是H+的跨膜梯度.
氧化磷酸化的工作原理是利用释放能量的化学反应来驱动需要能量的反应:这样的反应称为是“偶联”反应.意即在没有另一个反应的情况下,该反应不能发生.电子在电子传递链上从电子供体(如NADH)到电子受体(如氧)的流动,是一个放能的过程——它释放能量,而ATP的合成是一个耗能的过程,需要输入能量.电子传递链和ATP合酶都在膜中,在称为“化学渗透”的过程中,通过质子穿过这层膜的运动,将能量从电子传递链转移到ATP合酶中[1].实际上,这就像一个简单的电路,质子通过电子传递链中的质子泵酶,从膜带负电位的N端流向带正电位的P端.这些酶如同其中的电池,做功来驱动电流在回路中流动.质子的移动产生了跨膜电化学梯度 (英语 :Electrochemical gradient ),这通常称为“质子动力”.它包含两部分:质子浓度差(H+梯度,ΔpH)和电势差,其中N端有负电荷[2].
ATP合酶接通电路,让质子顺着电化学梯度流动,回到膜的N端,从中释放储存的能量[3].这动能驱动着酶的部分结构旋转,并与ATP的合成相偶联.
请登录后回答